Avoidable Polynomials and R C L

Silvia Steila

Universita degli studi di Torino

Winter School in Abstract Analysis:
Section of Set Theory and Topology

Hejnice
January 31st - February 7th,2015



Tornquist and Weiss idea

In 2012 Térnquist and Weiss studied many %3 definable version of some
statements equivalent to CH (2% = ;).

CH <= there exist some objects such that something happens.

They proved that these Y3 counterparts become equivalent to the
statement “all reals are constructible”.

R C L <= there exist some ¥} objects such that something happens.



From “CH implies S” to “R C L implies the X} version of S”

A A} well-ordering < is strong if it has length w; and if for any
P C R x R which is 3,

Vz <y P(x,z)

is X3 as well.

Theorem (Addison 1959)

If R C L then there exists a Al strong well-ordering of the reals.




From “S implies CH” to “the X1 version of S implies R C L”

Theorem(Mansfield and Solovay 1970)

Let A be a ¥3(a) set. Then either A C L[a], or else A contains a
perfect set. In particular, if a ¥} set contains a non-constructible
real then it is uncountable.

Lemma (Térnquist and Weiss 2012)

1. If there exists a non-constructible real, there exists a
non-constructible real x € V such that Nflx] =i

2. Let a€ L and A be a T1(a) definable set. Then if A is
uncountable, AN L is uncountable in L.




Tornquist and Weiss results

Theorem (Sierpinski 1965)

CH holds iff there are two sets A, B C R? with AUB =
R? such that all vertical sections of A are countable and
all horizontal sections of B are countable.

Theorem (Térnquist and Weiss 2012)

R C L iff there are Z% sets A, B C R? with AUB = R?
such that all vertical sections of A are countable and all
horizontal sections of B are countable.




Tornquist and Weiss results

Theorem (Sierpinski 1965)

CH holds iff there are sets Aq, A>, A3 C R3 such that
A1 U A, UAs = R3, and every line in the direction of
the x;-axis meets A; in finitely many points.

Theorem (Térnquist and Weiss 2012)

R C L holds iff there are Y1 sets A, Ay, A3 C R® such
that A; U Ay U A3 = R3, and every line in the direction
of the x;-axis meets A; in finitely many points.




Tornquist and Weiss results

Theorem (Komjath and Totik 2006)

—CH implies that for any n € wand any f : RxR — w
there exist two sets C, D C R such that |C| = |D| =n
and f | C x D is monochromatic.

Theorem (Térnquist and Weiss 2012)

R ¢ L iff for any n € w and for every ¥3-definable
function f : R x R — w there are sets C,D C R such
that |C| = |D| =nand f | C x D is monochromatic.




Tornquist and Weiss results

Theorem (Komjath and Totik 2006)

—CH implies that for any coloring g : R — w there are
four distinct x, y, z, w € R of the same color such that

X+y=z+w.

Theorem (Tornquist and Weiss 2012)

R ¢ L iff for any ¥} coloring g : R — w there are four
distinct x, y,z, w € R of the same color such that

X+y=z+w.




Some algebraic equivalences

Theorem (Erd8s and Kakutani 1943)

CH is equivalent to the following proposition: the set of
all real numbers can be decomposed into a countable
number of subsets, each consisting only of rationally
independent numbers.

Proposition

R C L iff there exists ¥(x, i) ¥} such that x € §; <
¥(x,i) and R = |J{S; : i € w} where each S; consists
only of rationally independent numbers.




Some algebraic equivalences

Theorem (Zoli 2006)

CH holds if and only if the set of all transcendental reals

is a union of countably many transcendence bases for
R.

Proposition

R C L iff the set of all transcendental reals is the union
of countably many transcendence bases for R uniformly
defined by a Y2 predicate.




(k, n)-ary polynomials

A polynomial p(xg,...,xk-1) € R[xo, ..., xxk—1] is a (k, n)-ary
polynomial if every x; is an n-tuple of variables.

For instance
plx.y,z) = x=yP=lly—zI?.

is a (3, n)-ary polynomial. Note that the product is the scalar product.



Avoidable (k, n)-ary polynomials

> Given a (k, n)-ary polynomial p(xo,...,Xk—1), a coloring
X R"—>w
avoids p(xp, ..., xk—1) if for every ry,..., rk—1 € R" distinct and

monochromatic with respect to ,

p(r07"'7rk—1) # 0.

» The polynomial p(xo,...,xx—1) is avoidable if there exists a
coloring which avoids it.



» A function
OéZAQXA:[X"'XAm_l—)BQXBlX"'XBm_l

is coordinately induced if for every i € m there is a function
«a; : A;j — B; such that

Oé(ao, ey am,l) = (ao(ao), ey Oémfl(amfl)).

» A function
g:A"—> B

is one-one in each coordinate if for every ag,...,an—1 € A and
be A, b+ a; for some i € m, then

glao,...ai-1,8i,di+1,---,am-1) 7# &(a0,-- -, 8i—1, b, dit1, ... am—1)-



Schmerl’s definition of m-avoidance

Let n € wand k € w\ {0,1}. For each m € w we say that a (k, n)-ary
polynomial p(xg,...,xk—1) is m-avoidable if for each definable function

g:(0,1)" - R"
which is one-one in each coordinate and for distinct
€, e—1 € (0,1)7
there is a coordinately induced
a:(0,1)" = (0,1)7

such that
p(ga(eo), ..., ga(ex—1)) # 0.



The relationship between avoidance and m-avoidance

Theorem (Schmerl 1999)

If =CH holds then every avoidable polynomial is 2-avoidable.

Theorem (Schmerl 1999)

If CH holds then every 1-avoidable polynomial is avoidable.




Y1 avoidance

» A (k,n)-ary polynomial p(xo,...,xx—_1) is Z3-avoidable if there
exists a ¥5 coloring which avoids it.

» A (k, n)-ary polynomial p(xg,...,xx_1) is (m, X})-avoidable if for
each r € RN L and for each ¥3(r) function

g:(0,1)" - R"
which is one-one in each coordinate and for distinct
€,...,ek—1 € (0,1)™
there is a coordinately induced
a:(0,1)™ = (0,1)™
which is ¥1(r, ey, ..., ex_1) and such that

p(ga(60)7 ce 7ga(ek71)) 7é 0.



Y1 versions of Schmerl’s results

Theorem (Schmerl 1999)

If =CH holds then every avoidable polynomial is 2-
avoidable.

Proposition

If R ¢ L then every ¥ }-avoidable polynomial is (2, 3)-
avoidable.




Y1 versions of Schmerl’s results

Theorem (Schmerl 1999)

If CH holds then every 1-avoidable polynomial is avoid-
able.

Proposition

If R C L then every (1, ¥1)-avoidable polynomial is >3-
avoidable.




Erdés and Komjath equivalence

Theorem (Erdés and Komjath 1990)

CH holds if and only if the plane can be colored with
countably many colors with no monochromatic right-
angled triangle.

Proposition

R C L if and only if there exists a ¥} coloring of the
plane with countably many colors with no monochro-
matic right-angled triangle.




Why is it a corollary of the ¥} version of Schmerl’s result?

Proposition

R C L if and only if there exists a ¥ coloring of the plane with
countably many colors with no monochromatic right-angled trian-

gle.

Since it happens iff the (3,2)-polynomial:
p(y,2) =l x—y P+ z=yIP =l x—2z]|

is ¥3-avoidable.



Why is it a corollary of the ¥} version of Schmerl’s result?

Proposition

R C L if and only if there exists a ¥ coloring of the plane with
countably many colors with no monochromatic right-angled trian-

gle.

Since it happens iff the (3,2)-polynomial:
p(y,2) =l x—y P+ z=yIP =l x—2z]|

is ¥3-avoidable.

Thank you!



