Avoidable Polynomials and $\mathbb{R} \subseteq L$

Silvia Steila

Università degli studi di Torino

Winter School in Abstract Analysis: Section of Set Theory and Topology

> Hejnice January 31st - February 7th,2015

> > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Törnquist and Weiss idea

In 2012 Törnquist and Weiss studied many Σ_2^1 definable version of some statements equivalent to CH $(2^{\aleph_0} = \aleph_1)$.

 $CH \iff$ there exist some **objects** such that **something happens**.

They proved that these Σ_2^1 counterparts become equivalent to the statement "all reals are constructible".

 $\mathbb{R} \subseteq L \iff$ there exist some Σ_2^1 objects such that something happens.

From "CH implies S" to " $\mathbb{R} \subseteq L$ implies the Σ_2^1 version of S"

A Δ_2^1 well-ordering \prec is **strong** if it has length ω_1 and if for any $P \subseteq \mathbb{R} \times \mathbb{R}$ which is Σ_2^1 , $\forall z \prec v P(x, z)$

 $\forall z \prec y \ P(x,z)$

is Σ_2^1 as well.

Theorem (Addison 1959)

If $\mathbb{R} \subseteq L$ then there exists a Δ_2^1 strong well-ordering of the reals.

From "S implies CH" to "the Σ_2^1 version of S implies $\mathbb{R} \subseteq L$ "

Theorem(Mansfield and Solovay 1970)

Let A be a $\Sigma_2^1(a)$ set. Then either $A \subseteq L[a]$, or else A contains a perfect set. In particular, if a Σ_2^1 set contains a non-constructible real then it is uncountable.

Lemma (Törnquist and Weiss 2012)

- 1. If there exists a non-constructible real, there exists a non-constructible real $x \in V$ such that $\aleph_1^{L[x]} = \aleph_1^L$.
- 2. Let $a \in L$ and A be a $\Sigma_2^1(a)$ definable set. Then if A is uncountable, $A \cap L$ is uncountable in L.

Theorem (Sierpinski 1965)

CH holds iff there are two sets $A, B \subseteq \mathbb{R}^2$ with $A \cup B = \mathbb{R}^2$ such that all vertical sections of A are countable and all horizontal sections of B are countable.

Theorem (Törnquist and Weiss 2012)

 $\mathbb{R} \subseteq L$ iff there are Σ_2^1 sets $A, B \subseteq \mathbb{R}^2$ with $A \cup B = \mathbb{R}^2$ such that all vertical sections of A are countable and all horizontal sections of B are countable.

Theorem (Sierpinski 1965)

CH holds iff there are sets $A_1, A_2, A_3 \subseteq \mathbb{R}^3$ such that $A_1 \cup A_2 \cup A_3 = \mathbb{R}^3$, and every line in the direction of the x_i -axis meets A_i in finitely many points.

Theorem (Törnquist and Weiss 2012)

 $\mathbb{R} \subseteq L$ holds iff there are Σ_2^1 sets $A_1, A_2, A_3 \subseteq \mathbb{R}^3$ such that $A_1 \cup A_2 \cup A_3 = \mathbb{R}^3$, and every line in the direction of the x_i -axis meets A_i in finitely many points.

Theorem (Komjáth and Totik 2006)

 \neg CH implies that for any $n \in \omega$ and any $f : \mathbb{R} \times \mathbb{R} \to \omega$ there exist two sets $C, D \subseteq \mathbb{R}$ such that |C| = |D| = nand $f \upharpoonright C \times D$ is monochromatic.

Theorem (Törnquist and Weiss 2012)

 $\mathbb{R} \nsubseteq L$ iff for any $n \in \omega$ and for every Σ_2^1 -definable function $f : \mathbb{R} \times \mathbb{R} \to \omega$ there are sets $C, D \subseteq \mathbb{R}$ such that |C| = |D| = n and $f \upharpoonright C \times D$ is monochromatic.

Theorem (Komjáth and Totik 2006)

 $\neg CH$ implies that for any coloring $g : \mathbb{R} \rightarrow \omega$ there are four distinct $x, y, z, w \in \mathbb{R}$ of the same color such that

$$x + y = z + w$$
.

Theorem (Törnquist and Weiss 2012)

 $\mathbb{R} \nsubseteq L$ iff for any Σ_2^1 coloring $g : \mathbb{R} \to \omega$ there are four distinct $x, y, z, w \in \mathbb{R}$ of the same color such that

$$x + y = z + w$$
.

Some algebraic equivalences

Theorem (Erdős and Kakutani 1943)

CH is equivalent to the following proposition: the set of all real numbers can be decomposed into a countable number of subsets, each consisting only of rationally independent numbers.

Proposition

 $\mathbb{R} \subseteq L$ iff there exists $\psi(x, i) \Sigma_2^1$ such that $x \in S_i \iff \psi(x, i)$ and $\mathbb{R} = \bigcup \{S_i : i \in \omega\}$ where each S_i consists only of rationally independent numbers.

Some algebraic equivalences

Theorem (Zoli 2006)

CH holds if and only if the set of all transcendental reals is a union of countably many transcendence bases for \mathbb{R} .

Proposition

 $\mathbb{R} \subseteq L$ iff the set of all transcendental reals is the union of countably many transcendence bases for \mathbb{R} uniformly defined by a Σ_2^1 predicate.

A polynomial $p(x_0, ..., x_{k-1}) \in \mathbb{R}[x_0, ..., x_{k-1}]$ is a (k, n)-ary polynomial if every x_i is an *n*-tuple of variables.

For instance

$$p(x, y, z) = ||x - y||^2 - ||y - z||^2$$

is a (3, n)-ary polynomial. Note that the product is the scalar product.

(日) (日) (日) (日) (日) (日) (日) (日)

Avoidable (k, n)-ary polynomials

• Given a (k, n)-ary polynomial $p(x_0, \ldots, x_{k-1})$, a coloring

$$\chi:\mathbb{R}^n\to\omega$$

avoids $p(x_0, ..., x_{k-1})$ if for every $r_0, ..., r_{k-1} \in \mathbb{R}^n$ distinct and monochromatic with respect to χ ,

$$p(r_0,\ldots,r_{k-1})\neq 0.$$

► The polynomial p(x₀,...,x_{k-1}) is avoidable if there exists a coloring which avoids it.

► A function

$$\alpha: A_0 \times A_1 \times \cdots \times A_{m-1} \to B_0 \times B_1 \times \cdots \times B_{m-1}$$

is **coordinately induced** if for every $i \in m$ there is a function $\alpha_i : A_i \to B_i$ such that

$$\alpha(\mathbf{a}_0,\ldots,\mathbf{a}_{m-1})=(\alpha_0(\mathbf{a}_0),\ldots,\alpha_{m-1}(\mathbf{a}_{m-1})).$$

A function

$$g: A^m \to B$$

is **one-one in each coordinate** if for every $a_0, \ldots, a_{m-1} \in A$ and $b \in A$, $b \neq a_i$ for some $i \in m$, then

$$g(a_0, \ldots a_{i-1}, a_i, a_{i+1}, \ldots, a_{m-1}) \neq g(a_0, \ldots, a_{i-1}, b, a_{i+1}, \ldots a_{m-1}).$$

Schmerl's definition of *m*-avoidance

Let $n \in \omega$ and $k \in \omega \setminus \{0, 1\}$. For each $m \in \omega$ we say that a (k, n)-ary polynomial $p(x_0, \ldots, x_{k-1})$ is *m*-avoidable if for each definable function

$$g:(0,1)^m \to \mathbb{R}^n$$

which is one-one in each coordinate and for distinct

$$e_0,\ldots,e_{k-1}\in(0,1)^m$$

there is a coordinately induced

$$\alpha: (0,1)^m \to (0,1)^m$$

such that

$$p(g\alpha(e_0),\ldots,g\alpha(e_{k-1}))\neq 0.$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

The relationship between avoidance and *m*-avoidance

Theorem (Schmerl 1999)

If \neg CH holds then every avoidable polynomial is 2-avoidable.

Theorem (Schmerl 1999)

If CH holds then every 1-avoidable polynomial is avoidable.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Σ_2^1 avoidance

- A (k, n)-ary polynomial p(x₀,...,x_{k-1}) is Σ¹₂-avoidable if there exists a Σ¹₂ coloring which avoids it.
- A (k, n)-ary polynomial p(x₀,..., x_{k-1}) is (m, Σ₂¹)-avoidable if for each r ∈ ℝ ∩ L and for each Σ₂¹(r) function

$$g:(0,1)^m
ightarrow \mathbb{R}^n$$

which is one-one in each coordinate and for distinct

$$e_0,\ldots,e_{k-1}\in(0,1)^m$$

there is a coordinately induced

$$lpha:(0,1)^m
ightarrow(0,1)^m$$

which is $\sum_{1}^{1}(r, e_0, \dots, e_{k-1})$ and such that

$$p(g\alpha(e_0),\ldots,g\alpha(e_{k-1})) \neq 0.$$

 Σ_2^1 versions of Schmerl's results

Theorem (Schmerl 1999)

If $\neg CH$ holds then every avoidable polynomial is 2-avoidable.

Proposition

If $\mathbb{R} \nsubseteq L$ then every Σ_2^1 -avoidable polynomial is $(2, \Sigma_2^1)$ -avoidable.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

 Σ_2^1 versions of Schmerl's results

Theorem (Schmerl 1999)

If CH holds then every 1-avoidable polynomial is avoidable.

Proposition

If $\mathbb{R} \subseteq L$ then every $(1, \Sigma_2^1)$ -avoidable polynomial is Σ_2^1 -avoidable.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Erdős and Komjáth equivalence

Theorem (Erdős and Komjáth 1990)

CH holds if and only if the plane can be colored with countably many colors with no monochromatic right-angled triangle.

Proposition

 $\mathbb{R} \subseteq L$ if and only if there exists a Σ_2^1 coloring of the plane with countably many colors with no monochromatic right-angled triangle.

・ロト・雪・・雪・・雪・・ 白・ ろくの

Why is it a corollary of the Σ_2^1 version of Schmerl's result?

Proposition

 $\mathbb{R} \subseteq L$ if and only if there exists a Σ_2^1 coloring of the plane with countably many colors with no monochromatic right-angled triangle.

Since it happens iff the (3, 2)-polynomial:

$$p(x, y, z) = ||x - y||^2 + ||z - y||^2 - ||x - z||^2$$

is Σ_2^1 -avoidable.

Why is it a corollary of the Σ_2^1 version of Schmerl's result?

Proposition

 $\mathbb{R} \subseteq L$ if and only if there exists a Σ_2^1 coloring of the plane with countably many colors with no monochromatic right-angled triangle.

Since it happens iff the (3, 2)-polynomial:

$$p(x, y, z) = ||x - y||^2 + ||z - y||^2 - ||x - z||^2$$

is Σ_2^1 -avoidable.

Thank you!