Avoidable Polynomials and $\mathbb{R} \subseteq L$

Silvia Steila

Università degli studi di Torino
Winter School in Abstract Analysis:
Section of Set Theory and Topology

Hejnice
January 31st - February 7th,2015

Törnquist and Weiss idea

In 2012 Törnquist and Weiss studied many Σ_{2}^{1} definable version of some statements equivalent to $\mathrm{CH}\left(2^{\aleph_{0}}=\aleph_{1}\right)$.
$\mathrm{CH} \Longleftrightarrow$ there exist some objects such that something happens.

They proved that these Σ_{2}^{1} counterparts become equivalent to the statement "all reals are constructible".
$\mathbb{R} \subseteq L \Longleftrightarrow$ there exist some Σ_{2}^{1} objects such that something happens.

From "CH implies S " to " $\mathbb{R} \subseteq L$ implies the \sum_{2}^{1} version of S "

A Δ_{2}^{1} well-ordering \prec is strong if it has length ω_{1} and if for any $P \subseteq \mathbb{R} \times \mathbb{R}$ which is Σ_{2}^{1},

$$
\forall z \prec y P(x, z)
$$

is Σ_{2}^{1} as well.

Theorem (Addison 1959)

If $\mathbb{R} \subseteq L$ then there exists a Δ_{2}^{1} strong well-ordering of the reals.

From "S implies CH" to "the Σ_{2}^{1} version of S implies $\mathbb{R} \subseteq L$ "

Theorem(Mansfield and Solovay 1970)

Let A be a $\Sigma_{2}^{1}(a)$ set. Then either $A \subseteq L[a]$, or else A contains a perfect set. In particular, if a Σ_{2}^{1} set contains a non-constructible real then it is uncountable.

Lemma (Törnquist and Weiss 2012)

1. If there exists a non-constructible real, there exists a non-constructible real $x \in V$ such that $\aleph_{1}^{L[x]}=\aleph_{1}^{L}$.
2. Let $a \in L$ and A be a $\sum_{2}^{1}(a)$ definable set. Then if A is uncountable, $A \cap L$ is uncountable in L.

Törnquist and Weiss results

Theorem (Sierpinski 1965)

CH holds iff there are two sets $A, B \subseteq \mathbb{R}^{2}$ with $A \cup B=$ \mathbb{R}^{2} such that all vertical sections of A are countable and all horizontal sections of B are countable.

Theorem (Törnquist and Weiss 2012)

$\mathbb{R} \subseteq L$ iff there are Σ_{2}^{1} sets $A, B \subseteq \mathbb{R}^{2}$ with $A \cup B=\mathbb{R}^{2}$ such that all vertical sections of A are countable and all horizontal sections of B are countable.

Törnquist and Weiss results

Theorem (Sierpinski 1965)

CH holds iff there are sets $A_{1}, A_{2}, A_{3} \subseteq \mathbb{R}^{3}$ such that $A_{1} \cup A_{2} \cup A_{3}=\mathbb{R}^{3}$, and every line in the direction of the x_{i}-axis meets A_{i} in finitely many points.

Theorem (Törnquist and Weiss 2012)

$\mathbb{R} \subseteq L$ holds iff there are Σ_{2}^{1} sets $A_{1}, A_{2}, A_{3} \subseteq \mathbb{R}^{3}$ such that $A_{1} \cup A_{2} \cup A_{3}=\mathbb{R}^{3}$, and every line in the direction of the x_{i}-axis meets A_{i} in finitely many points.

Törnquist and Weiss results

Theorem (Komjáth and Totik 2006)

$\neg \mathrm{CH}$ implies that for any $n \in \omega$ and any $f: \mathbb{R} \times \mathbb{R} \rightarrow \omega$ there exist two sets $C, D \subseteq \mathbb{R}$ such that $|C|=|D|=n$ and $f \upharpoonright C \times D$ is monochromatic.

Theorem (Törnquist and Weiss 2012)

$\mathbb{R} \nsubseteq L$ iff for any $n \in \omega$ and for every \sum_{2}^{1}-definable function $f: \mathbb{R} \times \mathbb{R} \rightarrow \omega$ there are sets $C, D \subseteq \mathbb{R}$ such that $|C|=|D|=n$ and $f \upharpoonright C \times D$ is monochromatic.

Törnquist and Weiss results

Theorem (Komjáth and Totik 2006)

$\neg \mathrm{CH}$ implies that for any coloring $g: \mathbb{R} \rightarrow \omega$ there are four distinct $x, y, z, w \in \mathbb{R}$ of the same color such that

$$
x+y=z+w
$$

Theorem (Törnquist and Weiss 2012)

$\mathbb{R} \nsubseteq L$ iff for any \sum_{2}^{1} coloring $g: \mathbb{R} \rightarrow \omega$ there are four distinct $x, y, z, w \in \mathbb{R}$ of the same color such that

$$
x+y=z+w
$$

Some algebraic equivalences

Theorem (Erdős and Kakutani 1943)

CH is equivalent to the following proposition: the set of all real numbers can be decomposed into a countable number of subsets, each consisting only of rationally independent numbers.

Proposition

$\mathbb{R} \subseteq L$ iff there exists $\psi(x, i) \sum_{2}^{1}$ such that $x \in S_{i} \Longleftrightarrow$ $\psi(x, i)$ and $\mathbb{R}=\bigcup\left\{S_{i}: i \in \omega\right\}$ where each S_{i} consists only of rationally independent numbers.

Some algebraic equivalences

Theorem (Zoli 2006)

CH holds if and only if the set of all transcendental reals is a union of countably many transcendence bases for \mathbb{R}.

Proposition

$\mathbb{R} \subseteq L$ iff the set of all transcendental reals is the union of countably many transcendence bases for \mathbb{R} uniformly defined by a Σ_{2}^{1} predicate.

(k, n)-ary polynomials

A polynomial $p\left(x_{0}, \ldots, x_{k-1}\right) \in \mathbb{R}\left[x_{0}, \ldots, x_{k-1}\right]$ is a (k, n)-ary polynomial if every x_{i} is an n-tuple of variables.

For instance

$$
p(x, y, z)=\|x-y\|^{2}-\|y-z\|^{2} .
$$

is a $(3, n)$-ary polynomial. Note that the product is the scalar product.

Avoidable (k, n)-ary polynomials

- Given a (k, n)-ary polynomial $p\left(x_{0}, \ldots, x_{k-1}\right)$, a coloring

$$
\chi: \mathbb{R}^{n} \rightarrow \omega
$$

avoids $p\left(x_{0}, \ldots, x_{k-1}\right)$ if for every $r_{0}, \ldots, r_{k-1} \in \mathbb{R}^{n}$ distinct and monochromatic with respect to χ,

$$
p\left(r_{0}, \ldots, r_{k-1}\right) \neq 0
$$

- The polynomial $p\left(x_{0}, \ldots, x_{k-1}\right)$ is avoidable if there exists a coloring which avoids it.
- A function

$$
\alpha: A_{0} \times A_{1} \times \cdots \times A_{m-1} \rightarrow B_{0} \times B_{1} \times \cdots \times B_{m-1}
$$

is coordinately induced if for every $i \in m$ there is a function $\alpha_{i}: A_{i} \rightarrow B_{i}$ such that

$$
\alpha\left(a_{0}, \ldots, a_{m-1}\right)=\left(\alpha_{0}\left(a_{0}\right), \ldots, \alpha_{m-1}\left(a_{m-1}\right)\right)
$$

- A function

$$
g: A^{m} \rightarrow B
$$

is one-one in each coordinate if for every $a_{0}, \ldots, a_{m-1} \in A$ and $b \in A, b \neq a_{i}$ for some $i \in m$, then
$g\left(a_{0}, \ldots a_{i-1}, a_{i}, a_{i+1}, \ldots, a_{m-1}\right) \neq g\left(a_{0}, \ldots, a_{i-1}, b, a_{i+1}, \ldots a_{m-1}\right)$.

Schmerl's definition of m-avoidance

Let $n \in \omega$ and $k \in \omega \backslash\{0,1\}$. For each $m \in \omega$ we say that a (k, n)-ary polynomial $p\left(x_{0}, \ldots, x_{k-1}\right)$ is m-avoidable if for each definable function

$$
g:(0,1)^{m} \rightarrow \mathbb{R}^{n}
$$

which is one-one in each coordinate and for distinct

$$
e_{0}, \ldots, e_{k-1} \in(0,1)^{m}
$$

there is a coordinately induced

$$
\alpha:(0,1)^{m} \rightarrow(0,1)^{m}
$$

such that

$$
p\left(g \alpha\left(e_{0}\right), \ldots, g \alpha\left(e_{k-1}\right)\right) \neq 0
$$

The relationship between avoidance and m-avoidance

Theorem (Schmerl 1999)

If $\neg \mathrm{CH}$ holds then every avoidable polynomial is 2 -avoidable.

Theorem (Schmerl 1999)

If CH holds then every 1 -avoidable polynomial is avoidable.

Σ_{2}^{1} avoidance

- A (k, n)-ary polynomial $p\left(x_{0}, \ldots, x_{k-1}\right)$ is Σ_{2}^{1}-avoidable if there exists a Σ_{2}^{1} coloring which avoids it.
- A (k, n)-ary polynomial $p\left(x_{0}, \ldots, x_{k-1}\right)$ is $\left(m, \Sigma_{2}^{1}\right)$-avoidable if for each $r \in \mathbb{R} \cap L$ and for each $\sum_{2}^{1}(r)$ function

$$
g:(0,1)^{m} \rightarrow \mathbb{R}^{n}
$$

which is one-one in each coordinate and for distinct

$$
e_{0}, \ldots, e_{k-1} \in(0,1)^{m}
$$

there is a coordinately induced

$$
\alpha:(0,1)^{m} \rightarrow(0,1)^{m}
$$

which is $\Sigma_{2}^{1}\left(r, e_{0}, \ldots, e_{k-1}\right)$ and such that

$$
p\left(g \alpha\left(e_{0}\right), \ldots, g \alpha\left(e_{k-1}\right)\right) \neq 0
$$

\sum_{2}^{1} versions of Schmerl's results

Theorem (Schmerl 1999)

If $\neg \mathrm{CH}$ holds then every avoidable polynomial is 2 avoidable.

Proposition

If $\mathbb{R} \nsubseteq L$ then every Σ_{2}^{1}-avoidable polynomial is $\left(2, \Sigma_{2}^{1}\right)$ avoidable.

\sum_{2}^{1} versions of Schmerl's results

Theorem (Schmerl 1999)

If CH holds then every 1 -avoidable polynomial is avoidable.

Proposition

If $\mathbb{R} \subseteq L$ then every $\left(1, \Sigma_{2}^{1}\right)$-avoidable polynomial is Σ_{2}^{1} avoidable.

Erdős and Komjáth equivalence

Theorem (Erdős and Komjáth 1990)

CH holds if and only if the plane can be colored with countably many colors with no monochromatic rightangled triangle.

Proposition

$\mathbb{R} \subseteq L$ if and only if there exists a \sum_{2}^{1} coloring of the plane with countably many colors with no monochromatic right-angled triangle.

Why is it a corollary of the Σ_{2}^{1} version of Schmerl's result?

Proposition

$\mathbb{R} \subseteq L$ if and only if there exists a Σ_{2}^{1} coloring of the plane with countably many colors with no monochromatic right-angled triangle.

Since it happens iff the (3,2)-polynomial:

$$
p(x, y, z)=\|x-y\|^{2}+\|z-y\|^{2}-\|x-z\|^{2}
$$

is Σ_{2}^{1}-avoidable.

Why is it a corollary of the Σ_{2}^{1} version of Schmerl's result?

Proposition

$\mathbb{R} \subseteq L$ if and only if there exists a Σ_{2}^{1} coloring of the plane with countably many colors with no monochromatic right-angled triangle.

Since it happens iff the (3,2)-polynomial:

$$
p(x, y, z)=\|x-y\|^{2}+\|z-y\|^{2}-\|x-z\|^{2}
$$

is Σ_{2}^{1}-avoidable.

Thank you!

