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Törnquist and Weiss idea

In 2012 Törnquist and Weiss studied many Σ1
2 definable version of some

statements equivalent to CH (2ℵ0 = ℵ1).

CH ⇐⇒ there exist some objects such that something happens.

They proved that these Σ1
2 counterparts become equivalent to the

statement “all reals are constructible”.

R ⊆ L ⇐⇒ there exist some Σ1
2 objects such that something happens.



From “CH implies S” to “R ⊆ L implies the Σ1
2 version of S”

A ∆1
2 well-ordering ≺ is strong if it has length ω1 and if for any

P ⊆ R× R which is Σ1
2,

∀z ≺ y P(x , z)

is Σ1
2 as well.

Theorem (Addison 1959)

If R ⊆ L then there exists a ∆1
2 strong well-ordering of the reals.



From “S implies CH” to “the Σ1
2 version of S implies R ⊆ L”

Theorem(Mansfield and Solovay 1970)

Let A be a Σ1
2(a) set. Then either A ⊆ L[a], or else A contains a

perfect set. In particular, if a Σ1
2 set contains a non-constructible

real then it is uncountable.

Lemma (Törnquist and Weiss 2012)

1. If there exists a non-constructible real, there exists a
non-constructible real x ∈ V such that ℵL[x]

1 = ℵL1.

2. Let a ∈ L and A be a Σ1
2(a) definable set. Then if A is

uncountable, A ∩ L is uncountable in L.



Törnquist and Weiss results

Theorem (Sierpinski 1965)

CH holds iff there are two sets A,B ⊆ R2 with A∪B =
R2 such that all vertical sections of A are countable and
all horizontal sections of B are countable.

Theorem (Törnquist and Weiss 2012)

R ⊆ L iff there are Σ1
2 sets A,B ⊆ R2 with A∪B = R2

such that all vertical sections of A are countable and all
horizontal sections of B are countable.



Törnquist and Weiss results

Theorem (Sierpinski 1965)

CH holds iff there are sets A1,A2,A3 ⊆ R3 such that
A1 ∪ A2 ∪ A3 = R3, and every line in the direction of
the xi -axis meets Ai in finitely many points.

Theorem (Törnquist and Weiss 2012)

R ⊆ L holds iff there are Σ1
2 sets A1,A2,A3 ⊆ R3 such

that A1 ∪ A2 ∪ A3 = R3, and every line in the direction
of the xi -axis meets Ai in finitely many points.



Törnquist and Weiss results

Theorem (Komjáth and Totik 2006)

¬CH implies that for any n ∈ ω and any f : R×R→ ω
there exist two sets C ,D ⊆ R such that |C | = |D| = n
and f � C × D is monochromatic.

Theorem (Törnquist and Weiss 2012)

R * L iff for any n ∈ ω and for every Σ1
2-definable

function f : R × R → ω there are sets C ,D ⊆ R such
that |C | = |D| = n and f � C × D is monochromatic.



Törnquist and Weiss results

Theorem (Komjáth and Totik 2006)

¬CH implies that for any coloring g : R→ ω there are
four distinct x , y , z ,w ∈ R of the same color such that

x + y = z + w .

Theorem (Törnquist and Weiss 2012)

R * L iff for any Σ1
2 coloring g : R→ ω there are four

distinct x , y , z ,w ∈ R of the same color such that

x + y = z + w .



Some algebraic equivalences

Theorem (Erdős and Kakutani 1943)

CH is equivalent to the following proposition: the set of
all real numbers can be decomposed into a countable
number of subsets, each consisting only of rationally
independent numbers.

Proposition

R ⊆ L iff there exists ψ(x , i) Σ1
2 such that x ∈ Si ⇐⇒

ψ(x , i) and R =
⋃
{Si : i ∈ ω} where each Si consists

only of rationally independent numbers.



Some algebraic equivalences

Theorem (Zoli 2006)

CH holds if and only if the set of all transcendental reals
is a union of countably many transcendence bases for
R.

Proposition

R ⊆ L iff the set of all transcendental reals is the union
of countably many transcendence bases for R uniformly
defined by a Σ1

2 predicate.



(k , n)-ary polynomials

A polynomial p(x0, . . . , xk−1) ∈ R[x0, . . . , xk−1] is a (k, n)-ary
polynomial if every xi is an n-tuple of variables.

For instance
p(x , y , z) =‖ x − y ‖2 − ‖ y − z ‖2 .

is a (3, n)-ary polynomial. Note that the product is the scalar product.



Avoidable (k , n)-ary polynomials

I Given a (k , n)-ary polynomial p(x0, . . . , xk−1), a coloring

χ : Rn → ω

avoids p(x0, . . . , xk−1) if for every r0, . . . , rk−1 ∈ Rn distinct and
monochromatic with respect to χ,

p(r0, . . . , rk−1) 6= 0.

I The polynomial p(x0, . . . , xk−1) is avoidable if there exists a
coloring which avoids it.



I A function

α : A0 × A1 × · · · × Am−1 → B0 × B1 × · · · × Bm−1

is coordinately induced if for every i ∈ m there is a function
αi : Ai → Bi such that

α(a0, . . . , am−1) = (α0(a0), . . . , αm−1(am−1)).

I A function
g : Am → B

is one-one in each coordinate if for every a0, . . . , am−1 ∈ A and
b ∈ A , b 6= ai for some i ∈ m, then

g(a0, . . . ai−1, ai , ai+1, . . . , am−1) 6= g(a0, . . . , ai−1, b, ai+1, . . . am−1).



Schmerl’s definition of m-avoidance

Let n ∈ ω and k ∈ ω \ {0, 1}. For each m ∈ ω we say that a (k, n)-ary
polynomial p(x0, . . . , xk−1) is m-avoidable if for each definable function

g : (0, 1)m → Rn

which is one-one in each coordinate and for distinct

e0, . . . , ek−1 ∈ (0, 1)m

there is a coordinately induced

α : (0, 1)m → (0, 1)m

such that
p(gα(e0), . . . , gα(ek−1)) 6= 0.



The relationship between avoidance and m-avoidance

Theorem (Schmerl 1999)

If ¬CH holds then every avoidable polynomial is 2-avoidable.

Theorem (Schmerl 1999)

If CH holds then every 1-avoidable polynomial is avoidable.



Σ1
2 avoidance

I A (k, n)-ary polynomial p(x0, . . . , xk−1) is Σ1
2-avoidable if there

exists a Σ1
2 coloring which avoids it.

I A (k , n)-ary polynomial p(x0, . . . , xk−1) is (m,Σ1
2)-avoidable if for

each r ∈ R ∩ L and for each Σ1
2(r) function

g : (0, 1)m → Rn

which is one-one in each coordinate and for distinct

e0, . . . , ek−1 ∈ (0, 1)m

there is a coordinately induced

α : (0, 1)m → (0, 1)m

which is Σ1
2(r , e0, . . . , ek−1) and such that

p(gα(e0), . . . , gα(ek−1)) 6= 0.



Σ1
2 versions of Schmerl’s results

Theorem (Schmerl 1999)

If ¬CH holds then every avoidable polynomial is 2-
avoidable.

Proposition

If R * L then every Σ1
2-avoidable polynomial is (2,Σ1

2)-
avoidable.



Σ1
2 versions of Schmerl’s results

Theorem (Schmerl 1999)

If CH holds then every 1-avoidable polynomial is avoid-
able.

Proposition

If R ⊆ L then every (1,Σ1
2)-avoidable polynomial is Σ1

2-
avoidable.



Erdős and Komjáth equivalence

Theorem (Erdős and Komjáth 1990)

CH holds if and only if the plane can be colored with
countably many colors with no monochromatic right-
angled triangle.

Proposition

R ⊆ L if and only if there exists a Σ1
2 coloring of the

plane with countably many colors with no monochro-
matic right-angled triangle.



Why is it a corollary of the Σ1
2 version of Schmerl’s result?

Proposition

R ⊆ L if and only if there exists a Σ1
2 coloring of the plane with

countably many colors with no monochromatic right-angled trian-
gle.

Since it happens iff the (3, 2)-polynomial:

p(x , y , z) =‖ x − y ‖2 + ‖ z − y ‖2 − ‖ x − z ‖2

is Σ1
2-avoidable.

Thank you!
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